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This note derives the gradients useful for training a typical neural network consisting of a stack of layers.
We start from vector calculus and matrix algebra fundamentals, and apply them to components of the
model successively. We utilize a minimal extension to these structures in the form of tuples, to minimize
use of additional mathematical theory. These tuples represent lists for bookkeeping of multiple data terms,
for which an operation can be repeated, implying a software implementation external to the mathematical
calculations. This allows us to avoid the need for extensions such as Kronecker products or tensor operations.

Background

Deep learning is based on fundamentally-simple operations. This may seem surprising the increasingly-impressive
results achieved with the method. But in fact this simplicity is key to its success, making it relatively simple
to scale to very large datasets and models. The most central and intensive operations are matrix algebra and
calculus.

Ultimately, matrix operations are an elegant notation for describing particular combinations of scalar operations.
One could choose instead to perform all calculations with scalar or vector algebra. The choice is a trade-off in
terms of ease-of-use, both in theory and application (i.e., programming); some operations may appear simpler
or easier to implement with different structures. In deep learning, popular software packages such as Tensorflow
([1]) and Pytorch ([6]) opted to utilize a more general notation yet, based on tensors (more-accurately called
multiway arrays in this case). This allows for the most abstraction of course, while leaving the problem of
achieving efficiency in the hands of the framework’s programmer and their compiler, who must operate with
this relatively-esoteric notation.

Restricting deep learning to vector and matrix operations, as in ([5]), is enough to elegantly describe most
but not all operations in deep learning. Additional structure is often addressed by vectorizing or matricizing,
reshaping matrices or tensors into lower-dimensional structures ([2]). This leads to use of Kronecker products
to correspondingly reshape the mathematical operations, which can quickly become complicated ([4],[7]).

Here will will follow a programming-minded strategy that separates problematic higher-order information from
the mathematical operations. We will minimize the use of any new structures or operations, except for one,
the tuple. A tuple is a simple ordered list of structures, which themselves may be scalars, vectors or matrices.
The goal of doing this is to support efficient implementation with a standard matrix framework such as NumPy
([3]), while relegating additional complexity to “control code”.

Vectors, Matrices, and Tuples

Vector and Matrix algebra are abstract descriptions that encapsulate many scalar algebra operations into single
vector or matrix operations. A sectors may be viewed as a tuple or list of scalar variables, e.g.,

v = [v1, v2, ..., vM ]1. (1)

where the subscript “1” is a label to simply indicate that this is our first list (more will come). The ordering of
scalar elements xi is not necessarily meaningful, but the identity of the ith element must be maintained. For
example, it may represent a particular pixel in an image. So the most straightforward approach is to maintain
the ordering. Basic operations with vectors such as addition and multiplication by a scalar are simply scalar
operations applied to all elements in the vector. Of course, many new properties (e.g., norms) and operations
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(e.g., the inner product) also arise when dealing with multiple variables, which may be important to a given
task. Hence vector algebra goes far beyond just tuples.

A matrix may be similarly viewed as a book-keeping tool to start, in this case as a list of vectors, e.g.,

M = [v1,v2, ...,vN ]2, (2)

with matrix instructions simply as repeated vector instructions for all vector elements. Again, of course, new
properties and operations become possible, leading to the field of matrix algebra. Alternatively, we can view
matrix data structures as lists of lists. In forming lists of matrices, we reach what we might view as rank-3
tuples, lists of lists of lists. For example,

T = [M1,M2, ...,MK ]3, (3)

Again, we may find a deep field of new properties and functions in dealing with such structures, called tensors
(though perhaps not accurately) or multi-way arrays, though they are far less widely used compared to vectors
and matrices.

In this report we will minimize our use of this third rank of structure, except for bookkeeping. So we will
use the well-known algebra for vectors and matrices, but utilize tuples whenever vectors or matrices are not
sufficient.

Vector Calculus

A vector argument is a compact notation for describing a multi-variable function.

f(x) = f(x1, x2, ..., xN ) (4)

The so-called “total derivative” of such a function with respect to its vector argument, similarly, is a compact
notation to represent the vector of all its partial derivatives with respect to each scalar variable. The notation
given here as a row vector is common though not universally used.

df(x)

dx
=

(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xN

)
= ∇Tx f (5)

This is the transpose of the gradient from vector calculus.

A vector-valued-function, conversely, is a compact notation for simultaneously describing multiple functions
over the same domain; the domain itself may be scalar or vector. Here we start with an example over a scalar
domain, t.

v(t) =


v1(t)
v2(t)

...
vM (t)

 (6)

The derivative of the vector-valued function is simply the vector of derivatives of the multiple functions.

∂v(t)

∂t
=


∂
∂tv1(t)
∂
∂tv2(t)

...
∂
∂tvM (t)

 (7)

Note that for the scalar case, the total derivative is the same as the partial derivative. Now we can see the
convenience of defining a gradient as a row-vector, since it leaves the column dimension for independently
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describing the different scalar functions. Given a vector-valued function over a vector domain,

f(x) =


f1(x)
f2(x)

...
fM (x)

 =


f1(x1, x2, ..., xN )
f2(x1, x2, ..., xN )

...
fM (x1, x2, ..., xN )

 , (8)

the total derivative can be described by combining the derivatives for each function as rows into a matrix, also
known as the Jacobian,

df(x)

dx
=


∇Tx f1
∇Tx f2

...
∇Tx fM

 =


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

... ∂f2
∂xN

...
...

...
∂fM
∂x1

∂fM
∂x2

... ∂fM
∂xN

 = J (9)

Thus far we have recalled three forms of derivatives, ∂
∂xi

, ∇x, and J, which produce scalars, column vectors,

and matrices, respectively. The total derivative df
dx is, for our purposes, merely a book-keeping convenience to

describe how we represent the collection of partial derivatives over all of a function’s parameters, leading to
each of the above as a special case.

Therefore, from now on we will denote a general function as f(x), where the domain and range are each vectors
of of sizes, M × 1 and N × 1, respectively, with M ≥ 1 and N ≥ 1 so that all three cases are included. It will
also be convenient at times to use an even more abridged shorthand to represent the total derivative, namely

the “d” operator. For example, given a function f : x→ y, we define df = df(x)
dx .

Activation Function

An activation function is used in neural network models to implement the nonlinearity at neural outputs. It
is a one-to-one mapping using the scalar function σ, which may represent various possible alternatives, applied
element-wise to each input.

σ(x) =


σ(x1)
σ(x2)

...
σ(xM )

 (10)

A common choice is the sigmoid function which has the nice property that σ′(z) = σ(z)(1− σ(z)).

sigmoid(z) =
1

1 + exp(–z)
. (11)

A more modern alternative is the rectified linear unit or “ReLU” function,

ReLU(z) = αmax(0, z) =

{
0, if z < 0

αz, if z ≥ 0
(12)

The derivative can also be computed efficiently,

σ′(z) =

{
0, if z < 0

α, if z ≥ 0
(13)
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For this simple function, we can see from Eq. (9) that the derivative will yield a (square) diagonal matrix,

∂σ

∂x
=


∂
∂x1

σ(x1) ∂
∂x2

σ(x1) ... ∂
∂xN

σ(x1)
∂
∂x1

σ(x2) ∂
∂x2

σ(x2) ... ∂
∂xN

σ(x2)
...

...
...

∂
∂x1

σ(xN ) ∂
∂x2

σ(xN ) ... ∂
∂xN

σ(xN )

 =


σ′(x1) 0 ... 0

0 σ′(x2) ... 0
...

...
...

0 0 ... σ′(xN )

 (14)

Note that it is also common to indicate the extension of scalar functions to vector versions by simply applying
the function to a vector. E.g., σ(x), or sin(x), log(x), etc., implying a vector-valued function defined with the
corresponding scalar function applied element-wise.

The Chain Rule

In this section will derive some basic cases of matrix calculus in detail, to show how they may be addressed
elegantly with the total derivative. One of the simplest multi-variable uses of the chain rule is a scalar-valued
function composed with a vector-valued function of a scalar variable.

f(v(t)) = f (v1(t), v2(t), ..., vN (t)) (15)

The chain rule for multi-variable functions yields,

∂f

∂t
=

∂f

∂v1

∂v1
∂t

+
∂f

∂v2

∂v2
∂t

+ ...+
∂f

∂vN

∂vN
∂t

= ∇Tv f ·
∂v

∂t
. (16)

Note that this is an inner product, with ∇Tv f as a row-vector and ∂
∂tv as a column-vector.

The extension to a vector-valued function f is straightforward, based on treating the function as a collection of
scalar-valued functions

f(v(t)) =


f1 (v1(t), v2(t), ..., vN (t))
f2 (v1(t), v2(t), ..., vN (t))

...
fM (v1(t), v2(t), ..., vN (t))

 (17)

Simply combine the results similarly for all scalar functions fi, producing a matrix-vector product,

∂f

∂t
=


∇Tv f1 ∂v∂t
∇Tv f2 ∂v∂t

...
∇Tv fM ∂v

∂t

 =
∂f

∂v
· ∂v

∂t
(18)

Alternatively, if the variables are vector-valued, as in

f(v(x)) = f (v1(x1, x2, ..., xp), v2(x1, x2, ..., xp), ..., vN (x1, x2, ..., xp)) ,

= g(x) (19)

In this case the chain rule produces a vector-matrix product. To derive this using only steps we have derived
thus far, we start from the gradient of the composed function g, the basic gradient,

df(v(x))

dx
=
∂g(x)

∂x
= ∇Tx g

=

(
∂g

∂x1
,
∂g

∂x2
, ...,

∂g

∂xN

)
=

(
∂f(v(x1))

∂x1
,
∂f(v(x2))

∂x2
, ...,

∂f(v(xp))

∂xp

)
(20)
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Note that the terms ∂
∂xi

f(v(xi)) ignore the dependence on the other xj , j 6= i purely to highlight the form of
Eq. (16). Using this result, we get

df(v(x))

dx
=

(
∇Tv f ·

∂v

∂x1
,∇Tv f ·

∂v

∂x2
, ...,∇Tv f ·

∂v

∂xp

)
= ∇Tv f ·

(
∂v

∂x1
,
∂v

∂x2
, ...,

∂v

∂xp

)
= ∇Tv f ·

∂v

∂x
(21)

Perhaps the last simple case, which includes the previous results as special cases, is the composition of vector-
valued functions over a vector domain, as in

f(v(x)) =


f1 (v(x))
f2 (v(x))

...
fM (v(x))

 (22)

As written above, we see that this can be described as a vector with elements of the form of Eq. (19). The
derivative is similarly a vector of gradients of the form of Eq. (21).

df(v(x))

dx
=


d
dxf1 (v(x))
d
dxf2 (v(x))

...
d
dxfM (v(x))

 =


∇Tv f1 · dvdx
∇Tv f2 · dvdx

...
∇Tv fM · dvdx

 =


∇Tv f1
∇Tv f2

...
∇Tv fM

 · dvdx =
df

dv
· dv
dx
, (23)

resulting in a matrix-matrix product.

These results can be extended to longer chains of functions by using the fact that function composition is
associative. We can, for example, compute the gradient of the composition a ◦ b ◦ c by first computing the
gradient of f = a ◦ b using Eq. (23), then compute the gradient of f ◦ c, again using Eq. (23). We can proceed
to compute the gradient of any number of compositions in this fashion. In general, given a composition of
vector-valued functions over vector domains,

f(x) = f (k)(f (k−1)(. . . (f (0)(x)) . . . ))

= f (k) ◦ f (k−1) ◦ · · · ◦ f (0) ◦ x (24)

we have the chain rule,

df(x)

dx
=

df (k)

df (k−1)
df (k−1)

df (k−2)
. . .

df (0)

dx

= df (k)df (k−1) . . . df (0) (25)

For programming consistency, in Eq. (24) we have included x itself as the final function in the composition.
This x is a simple function that takes no input and returns x. The total derivative of this function is dx

dx ,
which is the identity matrix. Then we can view chain rule terms as resulting from the function composition
operators.
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Single-layer Perceptron

The mathematical model for a Perceptron (consisting of a single-layer unless otherwise indicated) is a scalar
function formed by composing an activation function σ with an affine function φ(x) = wTx + b.

f(x) = σ(wTx + b)

= σ ◦ φ(w,b) ◦ x (26)

where we have indicated the parameters for the affine function with a subscript.

Historically, a step function was used for the activation σ. However this function is not differentiable, and so
is generally not used in deep learning. We will assume an alternative choice of activation (one of the previous
examples) is used instead.

In model optimization (i.e., training) contexts, we ultimately need derivatives with respect to the parameters
in order to optimize them. We commonly indicate parameters in functions as f(x; w, b) with a semicolon to
separate the parameters from inputs. The domain of f in this notation is still x, so we may still use the
shorthand df = ∂

∂x f(x;θ), while we must explicitly write ∂
∂θ f(x; Θ) for some parameter θ.

The derivatives for this function are

d

dx
f(x; w, b) =

dσ(φ)

dφ

dφ(x)

dx
= σ′ ·w (27)

d

dw
f(x; w, b) =

dσ(φ)

dφ

dφ(x; w, b)

dw
= σ′ · x (28)

d

db
f(x; w, b) =

dσ(φ)

dφ

dφ(x; w, b)

db
= σ′ (29)

Note that often we may not explicitly state the domain variable in terms such as σ′, or df . But these are still
functions and at implementation time we must input numbers to compute their values. For example, in the

above, “σ′” is dσ(φ)
d(φ) evaluated at φ = wTx + b, for a particular input x and parameters w and b. The back-

propagation algorithm describes the efficient ordering of calculations for each function within a network.

Derivatives with respect to Tuples

At this point we have gone as far as we easily can using matrix calculus. To compute derivatives with respect
to matrices would normally require reshaping operations and tricks like Kronecker products, or else full tensor
index methods. Our approach will be to use tuples. For a general tuple, Θ = [θ1, θ2, . . . θN ] and some vector-
valued function f(x; Θ), we compute the derivative with respect to the tuple as simply the tuple of derivatives
with respect to its elements

df

dΘ
=

[
df

dθ1
,
df

dθ2
, . . . ,

df

dθN

]
. (30)

Note that the elements of this tuple may be various kinds of structures, including even tuples themselves. If
the elements are scalars, we’d expect (and see) that the math is effectively the same as if we replaced the tuple
with a vector.

Derivatives with respect to Matrices

To differentiate with respect to matrices, we view the matrix as a tuple of column vectors. In this case, we will
avoid a significant amount of additional mathematical structure (i.e., having to learn a lot of new notation and
tricks) by sticking with our minimalist tuple approach. The derivative of a function with respect to a matrix
will be defined as the tuple

df

dA
=

[
df

da1
,
df

da2
, . . . ,

df

daN

]
(31)
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where ai refers to the ith column of A.

As with vectors in Eq. (5), derivatives with respect to matrices are ultimately just an abstract description for
multiple derivatives with respect to the scalar components of the matrix. So we can organize them as we choose,
as long as we implement the proper scalar calculations ultimately when performing calculations.

The application of the chain rule here follows analogously. For our purposes, it will suffice to consider cases
such as the following

d

dA
f(g(h(. . . ))) =

[
d

da1
f(g(h(. . . ))),

d

da2
f(g(h(. . . ))), . . . ,

d

daN
f(g(h(. . . )))

]
(32)

where we separate the entire expression into a tuple of vector-derivatives and proceed using prior results.

Affine Function

Fine-grained connectivity within a neural network is typically described by affine functions such as

φ(x) = Wx + b (33)

The parameters consist of the weight matrix W and the bias vector b, of size M ×N and M × 1, respectively.
The total derivative of this function is the same as of the linear function Wx, namely

d

dx
(Wx + b) =

dWx

dx
= W (34)

The derivatives with respect to the parameters are d
db and d

dW . The former is simply the identity matrix,

d

db
(Wx + b) =

db

db
= I (35)

The derivative with respect to W is a direct application of Eq. (31). If we write the affine function as a sum
over columns of W, as in

φ(x) = Wx + b =

n∑
i=1

wixi + b (36)

then we can see that

d

dwj
(Wx + b) =

d

dwj

(
N∑
i=1

wixi + b

)
=

d

dwj
wjxj = xjI (37)

Plugging this into Eq. (31) we get,

d

dW
(Wx + b) = [x1I, x2I, . . . , xNI] . (38)

Dense Layer

The Multi-Layer Perceptron (MLP) is a network model consisting of a composition of functions also known as
“layers” with standard forms, primarily a vector-valued variant of the (single-layer) Perceptron from earlier.
This is called a “dense” or “fully-connected” layer, as it has a weight for relating every input element to every
output element.

n(i)(x) = σ(i)(W(i)x + b(i))

= σ(i) ◦ φ(W(i),b(i)) ◦ x (39)
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where n(i) denotes the output of the ith layer (“n” here stands for “node”). The superscripts indicate that the
parameters and activation function may very between layers. When in a network, the input would be x = n(i−1),
but we can consider layers independently for now, and combine results later using the chain rule.

To optimize a network composed of such layers, we need the derivative of a layer with respect to its total input,
and the derivative with respect to its parameters. The first can be computed by applying the chain rule from
Eq. (25) to the composition of Eq. (39).

dn(i)

dx
= dn(i) = dσ(i) dφ(W,b) = dσ(i) W (40)

where dσ is the diagonal matrix given by Eq. (14). The derivative with respect to b is also simple,

dn(i)

db
= dσ(i) d

db
(Wx + b) = dσ(i) (41)

The derivative with respect to W is a direct application of Eq. (32).

dn(i)

dW
=

[
dn(i)

dw1
,
dn(i)

dw2
, . . .

dn(i)

dwN

]
=
[
x1dσ

(i), x2dσ
(i), . . . xNdσ

(i)
]

(42)

where we have used

d

dwk
σ(Wx + b) =

d

dwk
σ

 N∑
j=1

wjxj + b

 = dσ
d

dwk
wkxk = dσ Ixk (43)

Loss Function Optimization

We now have almost all the tools we need to optimize a deep network. The final piece is the derivative of the
chosen loss function, a simple scalar function of (in general) vector arguments, written as L(f(x),y). To optimize
a network we minimize this loss with respect to the parameters for some set of training data (a collection of
input vectors x), seeking the optimal choice of parameters. To do this using gradient descent, we update the
weights using the derivative of the loss with respect to the parameters, e.g.,

θ → θ − µ∇θL(f(x;θ),y).

Where θ represents the parameter we are optimizing, such as W(i) or b(i) for a particular layer i. We can treat
the loss calculation as an additional function composition,

L(f(x;θ),y) = L ◦ f(x;θ) (44)

d

dθ
L(f(x;θ),y) = dL

d

dθ
f(x;θ). (45)

So we simply need to know the gradient of our loss function and use the chain rule to combine it with the
gradients of our network layers, and we can optimize the network.

One common loss function is squared loss, for y = y ∈ R, used for predicting continuous-valued outputs, as in
regression.

L(f(x), y) = (f(x)− y)2 (46)

As a scalar function with a scalar argument, the gradient here is particularly simple.

d

dθ
(f(x;θ)− y)2 = 2(f(x;θ)− y)

d

dθ
f(x;θ) (47)

Another common choice is the Logistic loss, for y = y ∈ {−1,+1}, used for predicting binary outputs as in
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classification.

L(f(x), y) = log{1 + exp(yf(x))} (48)

For the derivative, we get

d

dθ
log{1 + exp(yf(x;θ))} =

1

1 + exp(yf(x))

d

dθ
f(x;θ) (49)

Full Network

A graph describing the compositions of functions in a loss calculation for a network is depicted in Fig. 1, where
we have included nodes explicitly indicating the parameters, target (known) y value, and loss computation itself

𝐧(0) 𝐧(1) 𝐧(𝑘)

𝛉(1) 𝛉(𝑘)

𝐿

…

𝛉(0)

𝐱

𝐲

Figure 1: Graph representing deep feed-forward network loss calculation. The input sample is x; the true label
for the sample is y; The nodes n(i) represent layer functions, and θ(i) represent layer parameters. The shaded
region is the feed-forward network, which computes an estimate of y given x.

To compute the derivative with respect to the input x, we apply the chain rule for the entire stack of layers,

dL

dx
=

dL

dn(k)

dn(k)

dn(k−1)
dn(k−1)

dn(k−2) ...
dn(2)

dn(1)

dn(1)

dn(0)

dn(0)

dx

=
dL

dn(k)

( k∏
l=0

dn(k−l+1)

dn(k−l)

)
(50)

To compute derivatives with respect to particular parameters, we only need use subsets of nodes. The graph
indicates dependencies of each node, informing us of the terms needed in a chain rule calculation. For example,
we can see from the graph that

dL

dθ(k)
=

dL

dn(k)

dn(k)

dθ(k)
+
dL

dy

dy

dθ(k)
=

dL

dn(k)

dn(k)

dθ(k)
, (51)

using the fact that dy
dθ(k) = 0 as can be seen from the graph (since there’s no dependency relating θ(i) to y, and no

further dependencies for y to consider). Applying the chain rule in this fashion to each subsequent dependency
while discarding terms which do not depend on the variables of interest, we get the general result

dL

dθ(i)
=

dL

dn(k)

dn(k)

dn(k−1)
dn(k−1)

dn(k−2) ...
dn(i+2)

dn(i+1)

dn(i+1)

dn(i)

dn(i)

dθ(i)

=
dL

dn(k)

( k−i∏
l=1

dn(k−l+1)

dn(k−l)

)dn(i)

dθ(i)
. (52)

For each dense layer, the parameters are W(i) and b(i). For the bias vector we use θ(i) = b(i) and plug Eq.
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(41) into Eq. (52),

dL

db(i)
=

dL

dn(k)

( k−i∏
l=1

dn(k−l+1)

dn(k−l)

)
dσ(i) = uTi dσ

(i). (53)

where we have defined

uTi =
dL

dn(k)

( k−i∏
l=1

dn(k−l+1)

dn(k−l)

)
.

Note that since dσ(i) is a diagonal matrix. the product uT dσ(i) is simply an element-wise product between ui
and the diagonal of dσ(i). We call the latter vector dσ with elements (dσ)i = ∂σ(x)

∂x .

Therefore we have, for the gradient,

∇b(i)L =
( dL

db(i)

)T
= dσ(i)ui = dσ ◦ ui.

For the weight matrix term we use θ(i) = W(i). We must also utilize Eqs. (30) and (42),

dL

dW(i)
=

[
dL

dw
(i)
1

,
dL

dw
(i)
2

, . . . ,
dL

dw
(i)
N

]

=

[
dL

dn(k)

( k−i∏
l=1

dn(k−l+1)

dn(k−l)

)dn(i)

dw1
, . . . ,

dL

dn(k)

( k−i∏
l=1

dn(k−l+1)

dn(k−l)

)dn(i)

dwN

]
=
[
x1u

T
i dσ

(i), . . . , xNuTi dσ
(i)
]
. (54)

Forming the gradient and simplifying,

∇W(i)L =
( dL

dW(i)

)T
=

[(
x1u

T
i dσ

(i)
)T
, . . . ,

(
xNuTi dσ

(i)
)T]

=
[
x1dσ

(i)ui, . . . , xNdσ
(i)ui

]
=
(
dσ ◦ ui

)
xT . (55)

The first step in Eq. (55) uses the fact that the transpose here applies to the elements of the tuple. The last
step uses the fact that the tuple of vectors that results here can be described by a matrix, in this case an outer
product.

Summary

We computed gradients for optimizing a network composed of dense layers with arbitrary activation functions.
We used tuples for the problematic step of computing gradients with respect to weight matrices, which allowed us
avoid flattening matrices or reshaping vectors, or delving into new branches of mathematics like tensor algebra.
The benefit of an abstract description is that it allows one to use abstract rules of manipulation without needing
to consider the internal workings of the abstract data structure. E.g., we can add vectors rather than having to
consider how to add each element. However in the application here, this perspective from lower-level principles
is ultimately necessary for efficient implementation. So we had to think through the meaning for our problem of
each operation with tuples, such as derivative with respect to a tuple, and transpose of a tuple of vectors.

A few more common extensions are needed which are trivial extensions of the same approach. For example,
batch-training means the input x must be treated as a tuple as well. Alternatively, layers often have multiple
channels which would be represented by tuples of weight matrices. Inclusion of these extensions would multiply
the sizes of equations here, but often amount to no more than tuples of the same form we have, without needing
further simplifications or optimization of the calculations are needed. The only remaining optimization in a
general one, to reuse terms which are repeated in multiple calculations. For example, the derivatives with
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respect to the loss and with respect to each node. Such considerations are typically incorporated into the
backpropagation algorithm.
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